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1996 (partial year) Annual Report: High Resolution Computerized
Ionospheric Tomography Systems (5/1/96 — 9/30/96)

The research funded by ONR YI Grant N00014-95-1-0850 is on the development of
resolution metrics and compensation techniques for each physical parameter in the computerized
ionospheric tomography (CIT) system. Research during the period since 5/1/96 has focused on
time-frequency reconstruction and time varying imaging.

The core of the space-frequency algorithm was developed in year one. Since then it has been
further refined and tested on more robust sets of images and cases with simulated measurement
noise. The results have been extremely positive and are detailed in the revised paper by H.
Na and C. Biswas, listed below. Future work will focus on making this core algorithm into a
complete CIT algorithm. Key pieces of this future work will be the development of a robust
interpolation routine for converting TEC data into projection slices and spectral samples on the
Cartesian grid.

The other area of research has been in the development of the time varying algorithm.
The goal was to develop an algorithm that combined model based imaging with smoothness
constraints to enable imaging capable of detecting motion of the ionosphere during data acqui-
sition. Work has focused on development of the Smoothness and Conjugate Gradient Method
(SCG). This algorithm uses smoothness constraints for a relaxed fit to TEC data. One key in
this method is the incorporation of additional measurements such as ionosonde data and DMSP
data. Currently the algorithm is capable of incorporation of ionosonde data. DMSP data will
be added in coming months. Work is beginning on merging this algorithm with the Residual
Correction Method, developed in year one. The result will be a three-dimensional (x,y,time)
time varying algorithm. Initial results of the SCG Method are detailed in the technical report
by Sutton and Na, listed below.

Details of the research are presented in the attached papers.
Papers and presentations:

E. Sutton and H. Na, “Ionospheric Tomography Using Smoothness and Conjugate Gradients”,
Technical Report.

H. Na and C. Biswas, "A Localized Space-Frequency Algorithm for Computerized Ionospheric
Tomography", Radio Science, (accepted).

E. Sutton and H. Na, "Static Tomographic Reconstruction of the Time Varying Ionosphere”,
Proc. of IEEE Conf. on Image Processing, 1996 (accepted).
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Ionospheric Tomography Using Smoothness and
Conjugate Gradients

Eric Sutton and Helen Na _
Department of Electrical and Computer Engineering
University of Iowa, Iowa City, IA 52242

July 29, 1996

Abstract

Ionospheric tomography (IT) is a technique that is used to create images of iono-
spheric electron density in a vertical slice through the ionosphere. For IT the re-
construction of electron density is not uniquely determined by the data, so all IT
reconstruction algorithms use a priori information. This can cause problems when the
ionosphere does not behave as predicted by the model. This paper presents an iono-
spheric tomography algorithm that uses minimal a priori information. The tradeoff for
additional flexibility is some decrease in resolution. This decrease in resolution can be
partially compensated for by using additional sources of information, such as ionosonde
data. An example is presented using simulated data. Using the example, the effect
of including ionosonde data, using an initial guess, and calculating calibration offsets
simultaneously with reconstruction is demonstrated.

1 Introduction

An ionospheric tomography (IT) system consists of a satellite and several ground stations.
With this configuration, tomographic data can be collected that can then be used to recon-
struct an image of ionospheric electron density in the plane defined by the ground stations and
the satellite orbit [1-11]. Several experimental studies have been performed to demonstrate
the feasibility of IT [12-16]. The central problem of IT is that the data generated by the IT
system is incomplete, i.e. the reconstruction is not uniquely defined by the data [17-23].

Considerable effort has been expended on the part of IT researchers to design algorithms
that use the incomplete IT data in the most advantageous way. possible. Often the IT data
and ionospheric modeling can be supplemented by other sources of data such as ionosonde
data. However, many current IT reconstruction algorithms rely heavily on increasingly
sophisticated a priori ionospheric models.

This reliance on ionospheric modeling leaves open the question of what happens when
there is a poor match between the actual ionosphere and the ionospheric model. Therefore
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there has been some recent interest in reconstruction algorithms that use more general a priori
information about the ionosphere instead of a priori models. Specifically, it is known a priori
that ionospheric electron density tends to be horizontally stratified, vertically smooth, and
tapered to small values at low and high altitude. This information can be used to construct
an algorithm that yields reasonable performance with minimal a priori information. In
addition, examination of the reconstructions produced using minimal a priori information is
useful in assessing the amount of information contained in the IT data itself.

Ionospheric tomography algorithms can be divided into two classes: pixel based methods
and nonpixel based methods. Pixel based methods include maximum entropy reconstruc-
tion [3], model assisted ionospheric tomography (7], and reconstruction using smoothness
‘constraints [4,24]. Nonpixel based methods include expansion in model ionospheres [22],
weighted, damped least squares [5], and residual correction method [8,8-10].

The earliest IT algorithms used pixels as basis functions, since existing reconstruction
algorithms such as algebraic reconstruction technique (ART) and multiplicative algebraic
reconstruction technique (MART) can be applied. A priori information can be introduced
into pixel based algorithms through an initial guess or through constraining relationships
between pixel values. An initial guess often comes from an ionospheric model. Data from
other sources, such as ionosonde, can be used to influence the initial guess, or can be used
directly by the reconstruction algorithm.

Nonpixel basis functions have several advantages. Since ionospheric electron density is
a smooth function, if the basis functions are appropriately designed smooth functions, then
the ionosphere can be approximated with better accuracy using fewer basis functions than
would be necessary using pixels. In addition, a priori information can be entered into the
reconstruction algorithm through the choice of basis functions. The reconstruction is then
constrained to lie in the image space spanned by the basis functions. The basis functions
often are derived from an ionospheric model.

All of the techniques mentioned above can produce very good results in cases where
there is a good match between the ionosphere and the predictions of the ionospheric model.
However, the ionosphere is very dynamic, and not all the factors that influence the electron
density distribution are clearly understood. If the match between the ionosphere and the
model is poor, then algorithms that rely heavily on a model can produce misleading results.
On the other hand, if no a priori information is used, then the quality of the reconstruction
is very poor.

Ideally, IT reconstruction should involve the comparison of several reconstructions from
different algorithms that use a priori information in different ways. If the a priori information
is correct, then reconstructions from algorithms that use weak a priori information should
be low resolution versions of reconstructions from algorithms that use a strong priori infor-
mation. If there are significant differences between reconstructions that cannot be explained
on the basis of reduced or enhanced resolution, then reconstructions using strong a priori
information are probably not accurate.

This paper presents an algorithm that uses minimal a priori information. The new
algorithm uses smoothness constraints similar to those proposed by Fehmers [24] combined
with solution by the method of conjugate gradients (CG) [25]. CG was chosen over more
traditional algebraic reconstruction algorithms such as ART, because the data will often be
inconsistent with the smoothness constraints. The ART algorithm tends to cycle between
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solutions when presented with inconsistent data [26], whereas the convergence of CG is not
affected.

2 Discussion

Suppose the region of the ionosphere to be imaged is approximated by a grid of pixels, where
there are I pixels in the angular direction and J pixels in the radial direction. Suppose further
that there are K measurements. Then the ionospheric tomography measurements can by
modeled using

Az =b, (1)

where b is a K x 1 vector of measurements, x is a IJ x 1 vector of image pixel values, and
A is a K x IJ matrix that transforms image space into measurement space. The objective
of tomographic reconstruction is to invert (1) so that the pixel values in z can be calculated
from the measurements in b.

A least squares (LS) solution to (1) is a solution that minimizes

J(z) = || Az — blI3. (2)

In general, the ionospheric tomography problem is mixed over and under determined, so
that there are infinitely many solutions that minimize J(z) in (2). The minimum norm least
squares solution (MNLS) is the LS solution with the smallest norm, in other words, the LS
solution that also minimizes ||z||2. '

If (1) is under determined, then there are nonzero solutions to Az = 0. In practical terms
this means that there are nonzero distributions of ionospheric electron density that do not
affect the measurements. The set of all solutions to Az = 0 is the null space of (1). The
null space is a sub-space of the solution space about which the measurements provide no
information.

Any LS solution x5 consists of two components

ZTps = TMN + TNs, (3)

where z,/y is the MNLS solution, and zyg is a solution from the null space of (1). For
the MNLS solution, zys = 0. The MNLS solution is used for many applications, since
the assumption that znyg = 0 is the most benign assumption that can be made about
the component of the solution that cannot be measured. This is not true for ionospheric
tomography, because the MNLS solution will often contain many negative electron densities,
and negative electron densities are clearly impossible. Therefore, for ionospheric tomography
a non-zero value must be given to x5 based on a priori assumptions.

For ionospheric tomography, instead of choosing the LS solution for which ||z||3 is min-
imum, it makes more sense to choose the solution that is in some sense consistent with
features expected in an ionospheric electron density distribution. Suppose some matrix C'
can be constructed such that ||Cz||3 is a measure of how consistent z is with features ex-
pected in an ionospheric electron density distribution. Then if C is of full rank, there exists
a unique LS solution of (1) that minimizes ||Cz||3.
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The concept of choosing the LS solution for which ||Cz||? is minimum is conceptually
elegant, but does not account for some practical computational realities. The matrices A
and C are both very large and sparse. Algorithms that calculate the LS solution of (1) that
minimizes ||Czl||2 exist but do not take advantage of sparsity so are not computationally
feasible for extremely large matrices. This difficulty can be circumvented by redefining J(z)

in (2) as

J(z) = ||Az — bl[; + o*[|Cz]l3, (4)

where a is a constant that is chosen large enough to guarantee a numerically stable unique
solution but small enough that the magnitude of the error measure J(z) is dominated by
||Az — b||2. The minimum of J(z) in (4) can be found using a sparse matrix algorithm such
as conjugate gradients (CG) [25].

For ionospheric tomography it is convenient to split C into three pieces and write (4) as

J(z) = [|Az ~ bll3 + ofl|C1zl + o3[|Cox ]} + o3[ Csall3, (5)

where ||Cyz||2 differentiates the image in the horizontal direction, ||Cpx||} differentiates the
image twice in the vertical direction, and ||C3z||2 selects the pixels at extreme low and high
altitude. These are the same three quantities suggested by Fehmers [4]. The rationale behind
this is as follows: (1) The Ionosphere is known to be horizontally stratified, thus the first
derivative is minimized in the horizontal direction. (2) The electron density varies over a
wide range in the vertical direction but still follows a relatively smooth function, thus the
second derivative is minimized to maximize smoothness in the vertical direction. (3) Electron
densities become very small at extreme low and high altitude, thus the values of pixels at
extreme low and high altitude are minimized. _

In the following discussion of the construction of ‘the matrices C;, Cs, and Cj, it is
assumed that when the image pixels are entered in the vector z, the image is scanned first
in the horizontal direction, then in the vertical direction. The matrix C; takes the first
derivative of the solution in the horizontal direction. The matrix C) is block diagonal where
each (I — 1) x I block is given by

(1 -1
1 -1

-

The matrix C) is then formed using

C,=1;® F, (7)

where ® denotes the Kronecker matrix product.
The matrix C, takes the second derivative of the solution in the vertical direction. The

matrix C, is block diagonal with column reordering where each J x J block is given by
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[ 1 -1
-1 2 -1

-1 2 -1 .
-1 2 -1

-1 1 |

The matrix C; is then formed using

C;=Q [ ® F3, (9)

where Q is an operator that reorders the columns to be consistent with the ordering of z.
The matrix Cj selects the pixels at extreme low and high altitude, and is given by

|4 0 -~ 0 0
03—[0 0 ---01,]' (10
Let the matrix C be defined as
alCl
C= 02C2 . (11)
Q3C3

Then the matrix C is of full column rank. Consider the real valued function u(h) defined for
real h between 0 and 1. Assuming that the second derivative of u exists for all h, constrain
u so that u(0) = 0, u(1) = 0, and «”"(h) = O for all h. Then u(h) = 0 for all h. Similar
reasoning can be used to show that C is of full column rank. Consider the vector v of length
N. If v is constrained so that v; = 0, vy = 0, and Fov = 0, where F; is as defined in (8),
then v = 0. Repeated application of this fact shows that the only solution to Cz = 0 is

x =0, so C is of full column rank.
The the error function given by (5) corresponds to the augmented LS problem given by

4--[2)

Define
[ A
and
[ b
then the CG method is applied to
A{A;x = ATb,. (15)
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The CG method converges if AT A, is a positive definite symmetric matrix. A7 A, is clearly
symmetric. Since C is of full column rank, A; also is of full column rank, so AT A, is positive

definite.

3 Examples

The simulated ionospheric electron density image used for the reconstructions that follow is
shown in Figure 1. The original image contains two peaks centered at +15° latitude. The
peak electron density varies from 300 to 500 km altitude. TEC data was calculated for 7
receivers placed every 10° from —30° to 30°, and satellite positions every 0.25° from —39°
to 39°. For the reconstruction using ionosonde information, 7 ionosondes were used, one at
each receiver location. The number of samples per ionosonde varies with the altitude of the

peak electron density.

1000

500

Altitude (km)

-30 -20 -10 0 10 20 30
Figure 1: Original image.

For all of the reconstructions that follow, there are 128 pixels in the horizontal direction
and 32 pixels in the vertical direction. A total of 500 iterations of CG are performed.

1000 - T 02 r T

500t ]

— NN~

Altitude (km)

..

-30 -20 -10 0 10 20 30

Figure 2: Reconstruction with zero initial guess.

Figure 2 shows a reconstruction that uses no initial guess. Because of the geometry of
the IT system, and the fact that very little a priori information is used in the reconstruction
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algorithm, the reconstruction of Figure 2 has very poor vertical resolution. The reconstruc-
tion of Figure 2 contains only a hint of the variation in height of the peak electron density
of the original image.

An initial guess was created by averaging the original image in the horizontal direction,
then repeating the vertical profile thus obtained at every latitude. In other words, the initial
guess varies with altitude but is constant with latitude. There are two different ways of
entering an initial guess into the algorithm. The initial guess can be used as the starting
point for the iteration, or the initial guess can be subtracted from the data. Both of these
possibilities will be examined in the paragraphs that follow.

In the absence of round off errors, the CG method converges to the exact solution in
the number of iterations equal to the number of pixels in the reconstruction. Therefore, if
the number of iterations is sufficiently large, then the starting point for the iteration should
make no difference in the final solution. For the example problem, if the initial guess is used
as the starting point for the iteration, then the reconstruction is virtually identical to the
reconstruction of Figure 2. However, in cases where either the TEC data is extremely sparse,
or round off errors interfere with the convergence of the CG algorithm, the starting point
for the iteration may make a difference in the final reconstruction.

1000

Altitude (km)

-30 -20 -10 0 10 20 30

Figure 3: Reconstruction with nonzero initial guess.

The second way of using the initial guess is to subtract it from the data before starting
the iteration, then add it back into the solution afterwards. The initial guess becomes the
a priori mean for the reconstruction. In this case, the initial guess g is entered into the

algorithm by defining

by = [ oo A ] . (16)

The solution is then given by = + g. A reconstruction using the initial guess in this way is
shown in Figure 3. The maximum electron density of the two peaks in Figure 3 is closer to
the correct value than it is for the reconstruction of Figure 2, but the variation in height of
the peak electron density is not reconstructed. Figure 3 exhibits an apparent improvement
in vertical resolution that is not entirely borne out by comparison with the original image.
A reconstruction using ionosonde information is shown in Figure 4. Note that the vertical
resolution is improved for both the bottom side and top side, even though the ionosonde

gives information only about the bottom side.
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Figure 4: Reconstruction with ionosonde information.
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Figure 5: Reconstruction simultaneous with calculation of calibration offsets.

For a real ionospheric tomography system, there is an unknown calibration offset asso-
ciated with each receiver. This offset is different for different receivers but the same for all
data from an individual receiver. It is possible to incorporate the calibration offsets into the
reconstruction algorithm and solve for the offsets simultaneously with reconstruction. This
is what was done for the reconstruction of Figure 5. Comparing Figure 5 with Figure 2, it
is clear that the inclusion of the additional unknowns causes a significant decrease in the

quality of the reconstruction.
For the reconstruction of Figure 6, calibration offsets were calculated as for Figure 5, but

ionosonde information was also used. The reconstruction of Figure 6 is considerably better
than the reconstruction of Figure 5; however, the improvement in top side resolution seen in
Figure 4 has been lost due to the inclusion of the additional unknowns in the reconstruction

problem.

4 Conclusion

The TEC data collected by ionospheric tomography systems is generally not sufficient to
uniquely determine a reconstruction of electron density. Sometimes data from other sources,
such as ionosonde data, can be used in addition to TEC data. Even when other sources of

information are available, a priori information is generally necessary.
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Altitude (km)
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Figure 6: Reconstruction with ionosonde information simultaneous with calculation of cali-
bration offsets.

Many ionospheric tomography algorithms use ionospheric models to supply a priori in-
formation. This approach can yield very good reconstructions when the ionospheric electron
density is consistent with the a priori information; however, if the a priori information is
incorrect, then the reconstructions obtained may be misleading.

An ionospheric tomography algorithm has been presented that does not use ionospheric
models in any way; instead, the new algorithm uses very general information about the
ionosphere. The new algorithm uses a measure of smoothness to choose one solution from
the many solutions that satisfy the TEC data.

Several examples of reconstructions using the new algorithm have been presented. The
examples were used to demonstrate the effect of using an initial guess, using ionosonde
information, and calculating station offsets.
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Abstract

Ionospheric tomography is a rapidly developing technique for imaging ionization distribu-
tions. Due to the system configuration, the resolving capability of these systems is still limited.
A number of reconstruction algorithms have been developed which strive to form high resolu-
tion images by enhancing the available data with information provided by model ionospheres.
This paper presents a new Fourier domain algorithm for ionospheric tomography which uses
unique characteristics of ionospheric spectra to enhance thcv reconstructions. Unlike most model
based algorithms, this solution is not limited to a linear combination of model ionospheres and
data. This algorithm also uses a localized approach which enables reconstructions of varying

resolution in different regions of the ionosphere.




I. Introduction

A recent development in the area of ionospheric electron density distribution measurement,
Computerized Ionospheric Tomography (CIT) holds considerable potential in applications rang-
ing from broadcast communications and surveillance to plasma science and radio astronomy.
Imaging of the electron density distribution over a certain geographical region in the vertical
plane [Austen at al., 1988; Fougere 1995; Fremouw et al., 1992; Kronschnabl et al., 1995; Na
and Lee, 1991; Pryse and Kersley, 1992; Sutton and Na, 1995; Raymund 1994], is performed
by an Earth-Satellite data acquisition system shown in Figure 1. The satellite transmits two
signals, at 150 and 400 MHz respectively, as it passes overhead at an altitude of approximately
1000km. These signals, received simultaneously by the chain of ground stations in the same
vertical plane, contain information regarding the electron density along each raypath through the

ionosphere and are known as Total Electron Content (TEC) measurements.

Mathematically, each TEC may be represented as the line integral of electron density N,

along a raypath P between satellite position s; and ground station g; :

TEC(sig;) = /Ne(a:) & €))
zeP :

This equation conforms to the expression for individual projection samples according to the
Radon Transform [Kak and Slaney 1988] of conventional tomography. Grouping TEC samples

from ray paths of various stations that are inclined at a specific angle 6, yields a pseudo




tomographic projection set Py as shown in Figure 1. By the Central Slice Theorem (CST)
[Kak and Slaney 1988], the one-dimensional FFT of Py corresponds to a linear slice in the

two-dimensional FFT of the spatial image inclined at 6.

Due to geometric constraints of the imaging system such as the continuity of the ionospheric
shell, the curvature of the earth and the limited number of ground stations, it is not possible to
record TEC measurements along the horizontal [Yeh and Raymund, 1991; Raymund et al., 1994;
Na and Sutton, 1994; Na and Lee, 1994; Sutton and Na, 1995]. This results in samples and
even entire projection sets missing along the vertical direction from the two dimensional Fourier
spectrum of the image. Specifically, it results in a double missing cone as shown in Figure 2.
The reconstruction process, thus, involves calculation of extrapolated values, often based on a

priori information, in this missing cone region, to obtain an enhanced spectrum and its image.

The Fourier domain has natural characteristics that are very well suited for the problem
of ionospheric tomography. The above mentioned relationship between total electron content
data, and the two-dimensional spectrum of the ionospheric distribution enables a clear separation
between regions where adequate information has been measured and regions where é priori
information is needed. This separation cannot be made in the spatial domain. Furthermore,
spectra of greatly varying ionospheric distributions have similar underlying characteristics. These

characteristics can be utilized to enhance ionospheric tomography reconstructions.

This paper presents a Fourier domain algorithm that uses a localized approach to enhance-

ment. By expanding the measured data into the four-dimensional space-frequency domain, the




spectral content is localized. The estimation of missing information can then be performed using
only local spectral characteristics. Further localization is made possible by selecting a priori
information to be used for enhancement in each local region based upon only local spectral

characteristics.

The a priori information used in this algorithm is derived from a database of model
ionospheres. However, unlike many other model based approaches, the solution is not constrained
to lie within the space defined by the models. This algorithm thus permits solutions which are not
merely the result of linear combination of model ionospheres, hence enabling a robust balance
between data and model information. The localization in this algorithm not only enhaﬁces
the reconstructions, but provides a method for reconstructing images of varying resolution in

different regions of the ionosphere.

II. Direct Fourier Method

Fourier methods are based upon the central slice theorem of tomography [Kak and Slaney
1988]. Consider the ionospheric tomography system shown in Figure 1. Total electron content
data is acquired for every propagation path between each satellite location and ground station.

Tomographic projections can be formed by grouping the TEC data according to the angle of the

propagation paths. The central slice theorem relates the Fourier transform of these projections

to the two-dimensional Fourier transform of the electron density distribution which is being

reconstructed.

Let pg(t) be a projection of the electron density distribution at angle 8, or the collection




of TEC data with propagation paths at an angle 8. Let f(z,y) represent the two-dimensional

electron density distributions, or the image to be reconstructed. Now consider the Fourier

transform of the py(t) denoted Py(f).
Bo(f)= [ (e ias @

Each projection can be expressed as a line integral through the electron density distribution,

using a rotated coordinate system.

polt) = / £(t, $)ds 3

The coordinate systems are related by the following matrix.

t cosf sinf ||z
[s]z[—sinﬂ cosa][y] @

By substituting Equation 3 into Equation 2, the Fourier transform of a projection can be written

in terms of the electron density distribution.

Py(f) = 7 Uo f(t,s)ds] eIt (5)

—o0 |00

Using the relationship in Equation 4, this can be transformed into the original (z,y) coordinate

system.
oo 00

= | [ serrmentins g 0

—00 —00

The two-dimensional Fourier transform of the electron density distribution has a similar form.

[o <IN o]

F(U,U)=//f(:v,y)e_j[“”"y]dzdy ()

—00 —00




By comparing Equation 6 to Equation 7, it can be shown that each projection spectrum is one

slice of the image spectrum.
Py(f) = F(wcos§,wsin§) ®)

This relationship is depicted in Figure 3.

The fundamental Fourier domain reconstruction algorithm, called the direct Fourier method,
applies the central slice theorem to the Fourier transform of each projection. The result is
the two-dimensional spectrum of the image. An inverse two-dimensional Fourier transform
produces the image.

In ionospheric tomography, the angles of the propagation paths are restricted by physical
limitations of the system. Therefore, slices of the image spectrum are correspondingly restricted
creating a missing cone of information, as shown in Figure 3. The effect in the final image
is shown in Figure 4 and Figure 5. Figure 4 shows the original image and Figure 5 shows
the image reconstructed using the direct Fourier method from data that was restricted to a 120°
range. As with other ionospheric tomography algorithms, clearly enhancement is needed in

order to estimate the missing information.

III. Localized Space-Frequency Algorithm

The new algorithm, based upon the Direct Fourier Method, uses a localized reconstruction
process and Fourier domain feature extraction for incorporation of local a priori information
from a database of model ionospheres. This algorithm has several unique features. First,

the emphasis on local processing and local a priori information enables the algorithm to be




specialized in each region of the ionosphere. This would, for example, permit varying degrees
of resolution to be specified for each region based upon the requirements of the particular
application. Furthermore, the estimation of the missing information is enhanced by utilizing
only local spectral measurements and features. This algorithm also exploits the unimodal

characteristics of the ionospheric spectra for classification of a priori information.

Reconstruction is achieved in this algorithm by alternately processing the signal in the
spectral and spatial domains for each region of the image. The iterative nature of the algorithm
allows incorporation of some amount of a priori information in each stage of the recovery process.
This amount can be regulated both according to the iteration number and location of the region
of interest. The above situation ensures a convergent balance between recorded data and model,

thus allowing for reliability and robustness of solution.

The localized space-frequency algorithm expands the two-dimensional missing cone spec-
trum, obtained from the data, into a four-dimensional space-frequency domain. This space-
frequency domain is a four-dimensional extension of the two-dimensional time-frequency space.
Two-dimensional time-frequency distributions, provide information on the frequency distribution
of a signal over time, unlike Fourier domain spectra which only describe the net frequency content

[Boashash 1991}, and thus, by definition assumes knowledge of signal over tifne t € (00, 00).

The time-frequency representation of one dimensional signals is analogous to a musical score
where notes, i.e. frequencies, are shown as a function of when they are to be played, i.e. time.

Time-frequency analysis is used for a wide range of signal processing applications such as in




filtering of harmonics in speech signals. Exténding the concept to two-dimensional signals such
as images, simultaneous representation of energy distribution in the two spatial and two spectral
dimensions can be defined in a four-dimensional information space. Energy distribution at a
fixed frequency occurring at various spatial locations within the image can now be individually
identified and vice-versa. Localization thus achieved, aids in selective modification of important

image features based on their spectral content.

Given the limited quantity of reliable information in the recorded data, preservation of data
accuracy in the reconstruction process is crucial to the success of the algorithm. The localization
property of four-dimensional space-frequency domain allows an extra level of information to
be extracted from the data. Consider the known portion of the spectrum. This is simply the
measured data in a different domain. The four-dimensional space-frequency expansion stretches
the measured data by providing information on a relationship of the data to each spatial location.
This can be likened to knowing not only which colors exist in a photograph, but where that

color exists.

Several two-dimensional time-frequency distributions exist which can be extended to four-
dimensions including the Wigner-Ville, and the Short-Time Fourier Transform (STFT) [Boashash
1991]. In this paper, we present an algorithm based upon a simplified version of the four-
dimensional extension of the Short-Time Fourier Transform. This four-dimensional extension

will be referred to as the Limited-Area Fourier Transform (LAFT).

The idea behind Limited Area Fourier Transform is to isolate regions of the image and
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investigate spectral properties of the same. A simple rectangular windowing function w, 3(z, y)
is used to isolate an [ x [ section of the image centered at (al + {/2,bl + [/2) so that the whole
image can be selectively partitioned into (N/ l)2 partial images each denoted by the ordered

pair (a,b). Thus the partial image f,;(z,y) can be expressed in terms of the original image

f(z,y) as :
fa,b(xay) = f(xv y) X wa,b(x,y) ®

Using rectangular windowing, the two-dimensional Fourier transform of the window function

in the center would be :

2 12
WO,O(u,v)z/ /e_ﬂ"[%] dzdy = lzsinc(%)sinc(;—;) (10)
~1/2 -1/2

In shifting the window to extract the block (a,b) an exponential term gets multiplied with

equation 10 so that :
Wob(u,v) = e 27 (%)W o (u, ) (11)
and a partial spectrum can be represented as :
Fyp(u,v) = F(u,v) * W p(u,v) (12)

If a missing cone of § degrees appears in the whole spectrum then a similar missing cone appears
in all the partial spectra with the cone edges marginally blurred because of the sinc convolution.
This transform was chosen because its method of localization in the image domain can be

easily matched to desired regions of the ionosphere. According to basic STFT, the complete
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time-frequency representation of a signal involves window shifts of unit distance along the
time axis to estimate instantaneous frequencies. As a two-dimensional version of STFT, LAFT
involves single pixel shifts of the square area window function along either axis for computing
successive values in the localized four-dimensional information space. In order to reduce the
number of computations without significant loss of resolution, the experimental version of LAFT
was implemented using a sub-sampled version of the full LAFT such that the set of partial images

were formed by non overlapping window functions.

The image reconstructed from the direct Fourier method is the starting point for the localized
space-frequency algorithm. This image is segmented into subregions by the LAFT. Each
subregion and its Fourier transform are then processed individually. A modified iterative
Gerchberg-Papoulis extrapolation procedure is used to estimate the missing information in each
local spectrum. Local a priori information is incorporated into the reconstruction process in this
modified Gerchberg-Papoulis procedure. Once the localized regions have been reconstructed,

the final image is formed by reassembling the appropriate segments of the image region.

The original Gerchberg-Papoulis extrapolation procedure is an iterative enhancement tech-
nique which uses minimal a priori information, requiring only the spatial limits of the image
[Gerchberg 1974, Papoulis 1975]. Figure 6 outlines one iteration of the Gerchberg-Papoulis
procedure and the modified Gerchberg-Papoulis procedure. This process iterates between the
spatial and Fourier domains enforcing spatial limits in the spatial domain and the values ob-

tained from the measured data in the Fourier domain. In the Fourier domain, the region that was
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originally unknown is replaced in each iteration by the values estimated through the previous
iteration. Because CIT systems are severely underdetermined, Gerchberg-Papoulis extrapolation
does not incorporate sufficient a priori information for image enhancément. In order to improve
the reconstruction, we modify the procedure to incorporate local a priori information provided
by model ionospheres. In the Fourier domain, instead of simply replacing the known region with
the original measured values, we also alter the e:stimated region of the image by replacing the
estimated values with a weighted sum of estimated values and values obtained from the ’best
fit’ a priori spectrum. A convergent balance between reliability of data and a priori support is

eventually achieved.

The ’best fit’ local a priori spectrum is identified by examining a two-dimensional feature
space. A database of model ionospheres is generated from the IRI-90 model. Each model
ionosphere is segmented into subregions by the LAFT. Since spectra of local regions of the
model ionospheres have a unimodal distribution, two features of each local spectrum are used
to characterize the spectrum, as shown in Figure 7. The first feature is the magnitude of the
central peak and the second feature is the transverse diameter of the peak at a given height.
These correspond to the first and second moments of the distribution. For each local ionospheric

region, the database is reduced to a collection of feature pairs: (magnitude, diameter).

A two-dimensional plot of points, each representing an image or sub-image forms a feature
space. A sub-image at block x-y is formed by extracting the region of the whole-image that occurs

within the tile occupying the xth row and yth column of the image grid. A priori information for
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each local region is represented by one plot of the appropriate two-dimensional feature space.
Two sample feature space plots generated from 300 model images for two different locations of
the same image are shown in Figure 8. The plot on the left for block 0-0, which corresponds
to a region of low electron density and minor variations in distribution patterns, shows smaller
magnitude and spectral lobe diameters than the plot for block 2-3 which corresponds to a region

of high electron content and activity.

The image points in each feature space plot which lie in close proximity in a local area form
a cluster. Clustering refers to the operation of nominating a representative of each cluster fo form
a higher level database of feature points for the feature identification process. Clustering thus
reduces the initial feature space to a group of possible representative models for each ionospheric

image region, each characterized by a different feature pair: (magnitude, diameter).

The ’best fit’ a priori spectrum is determined by performing feature extraction on the localized
spectrum, prior to the extrapolation process, to identify its feature pair, (magnitude, diameter).
The feature pair is then compared to the a priori feature space and a ’best fit” a priori subregion
is formed through a weighted linear combination of the representative local model subregions.
The weights are determined by the distance in the feature space to each cluster point. The ’best
fit’ a priori spectrum is used in the modified Gerchberg-Papoulis to improve estimation of the

missing region in each iteration.

A flowchart of the complete localized space-frequency algorithm is shown in Figure 9. First,

the central slice theorem is used to form the missing cone spectrum of the complete image. The
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complete image without enhancements is obtained through an inverse Fourier transform. This
image is segmented into several subregions. Each subregion is then processed individually.
Feature extraction is performed on each partial spectrum and the ’best fit’ local a priori partial
spectrum is identified. The modified Gerchberg-Papoulis extrapolation process is used to estimate
the missing spectral information. This process converges upon the enhanced reconstruction of

each subregion. These reconstructions are recombined to form the final image.

IV. Results

This algorithm was tested using a database of 300 model ionospheres generated using IRI-90.
The image was subdivided into sixteen subregions of equal size. Feature sets were formed from
the 300 model ionospheres for each of the 16 subregions. Clustering showed that each subregion

could be reasonably represented using 10 to 15 representative feature pairs and model subregions.

Figure 4 shows the test image. It was assumed that data was available covering projection
angles from -60° to 60°, that is the imaging system introduced a missing cone of semivertical
angle 30°. The test image was created by a nonlinear combination of two dissimilar model
images simulated for the same observation site. It was ensured that no single image from the
database or linear combinations thereof would be sufficient to uniquely characterize the test
image. The composite test figure represents a partially perturbed ionosphere. Creation of a
missing cone in its spectral domain makes the test image-model data base relationship highly
non-linear. Hence it is possible to claim that the test image is an independent representative of

ionospheric conditions above the same location as the model database.
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Figure 5 shows the reconstruction using the direct Fourier method without any a priori
information or extrapolation. In other words, this is the information available from only the
data. Figure 10 shows the reconstruction using the localized space-frequency algorithm. In the
modified Gerchberg-Papoulis process, the weighting between the a priori partial spectrum and
the estimated partial spectrum was chosen to be even, i.e. 50% of each was used. Figure 10

was obtained using 10 iterations of the modified Gerchberg-Papoulis process on each of the 16

subregions.

For qualitative comparison, a set of three reconstructions is presented in Figure 11. Figure
11a shows the original test image, Figure 11b shows the image with a 30° missing cone in its
spectrum and Figure 11c shows a reconstruction with 30% a priori information. It was observed

that beyond 30%-40% model based a priori information lay a region of diminishing returns. This

‘is substantiated by the graph shown in Figure 13. Comparison of Figure 11(a) and (b) show

a general lowering and smoothing of the two peak electron concentration zones and formation
of a ridge like structure in the high altitude regions (700-1000 km). There appear to be three
distinct centers of electron concentration in the latter image. Figure 11(c) shows a considerable
improvement from 11(b). The two peak structure is restored, the high altitude ridge obscured
and the general shape of the low altitude electron distribution contours partially recovered. Note
also the relative loss of information in the lower left hand corner of 11(c). This can be attributed
to a mismatch of test and model blocks resulting from misidentification at this point. The overall

contour shapes are significantly restored in Figure 11(c).
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The response of the space-frequency algorithm to noise corrupted data was tested by
creating an image corresponding to projection sets whose samples were randomly corrupted
by “measurement” noise up to 10% signal strength. Noise corruption of random samples in the
projection sets amounts to linear ridges and furrows on the two-dimensional backprojected image.
Figures 12(a), (b), (c) and (d) show the data image with a spectral missing cone and corrupted
by noise, followed by reconstructions with 30% and 50% a priori information, respectively.
These show that the space-frequency algorithm is able to extract adequate quantities of signal
information for identifying related, uncorrupted, a priori information. Influence of this a priori
information is demonstrated in the two successive reconstructions. The reconstruction using
50% a priori reconstruction is a better approximation of the original than the one using 30% a
priori information. This example demonstrates that the process of local spectral identification of

a priori data is relatively immune to high levels of noise corruption.

A third set of images were used for quantitative estimation of the algorithm performance.
Figure 13 shows a composite plot of average mean square error (mse) for reconstructions using
0% — 90% a priori information and 1 to 10 iterations. It can be seen that significant improvement
is obtained as the percentage of a priori information is increased from 0% to 40% or 50%.
However, the improvement ‘saturates at that point. For 30% or higher amounts of a priori

information, the reconstructions converge within 10 iterations.

V. Conclusions

This paper has presented a localized space-frequency algorithm for ionospheric tomography.
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This algorithm enables local characteristics of the ionosphere to be used for image enhancement

and exploits the features of the local spectra for selection of a priori information. Because of the

“way in which a priori information is incorporated in this routine, reconstructions are not restricted

to a space defined by the a priori information. The localization in this algorithm is determined
by the segmentation of the image region. This can be based upon the characteristics of a rough
reconstruction or a priori information. Because of the localized processing, this approach may
be useful for imaging ionospheric conditions with significant local irregularities.

There are a number of parameters in this algorithm which govern its performance. These in-
clude the weighting given to a priori information, the number of 'iterations, and most importantly,
the selection of the subregions. This paper has discussed the effects of the first two parameters.
Further investigations are needed to analyze the effects of varying subregion selection.

The computational requirements of this algorithm are based upon the number of subregions
selected. However, since the processing of each subregion is entirely independent of other
subregions, the reconstructions can be performed in parallel. Also, calculation of the feature
spaces from model ionospheres is only performed once for any given segmentation. Finally,
although this algorithm is an iterative approach, it has been shown that fewer than 10 iterations

are needed for typical reconstructions.
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STATIC TOMOGRAPHIC RECONSTRUCTION OF THE TIME VARYING
IONOSPHERE
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ABSTRACT

An image of electron density in a vertical slice through the
ionosphere can be created using tomographic techniques.
An ionospheric tomography system consists of a satellite
and several ground stations. Ionospheric electron density
can change significantly during the time it takes to col-
lect enough data for one image. In many other applica-
tions of tomography, motion of an object in the source im-
age produces obvious artifacts in the reconstruction such as
streaking along object edges. For ionospheric tomography,
the effects of motion in the source image are less obvious
but nevertheless cause serious errors in the reconstruction.
This paper discusses the effects of motion in the ionosphere
on static ionospheric tomography reconstructions, and sug-
gests ways to detect that a reconstruction has been cor-
rupted by motion in the source image. Several simulated
examples are presented using two different ionospheric tom-
ography reconstruction algorithms.

1. INTRODUCTION

Ionospheric tomography (IT) is a technique that is used
to reconstruct images of jonospheric electron density {1, 2].
An IT system consists of a satellite in polar orbit and sev-
eral ground stations located along a line of longitude un-
derneath the orbit of the satellite. Using the differential
Doppler technique, total electron content (TEC) data are
obtained along paths between the satellite and the ground
stations. TEC is the integral of electron density, so to-
mographic techniques are used to reconstruct an image of
jonospheric electron density in a vertical plane that includes
the satellite orbit and the ground stations. The principal
difficulty associated with IT is that the TEC data do not
form a complete set of projections of the source image (3, 4].
Therefore all practical IT algorithms use a priori informa-
tion to supplement the information contained in the TEC
data. ’

Another source of information that can be used to sup-
plement TEC data is ionosonde data. An ionosonde is es-
sentially a one dimensional radar looking straight up. The
ionosonde gives electron density values in a vertical line
above the location of the ionosonde up to the altitude of
the maximum electron density. The ionosonde only gives
information on the bottom side of the ionosphere and only
over a very limited area.

One of the sources of errors for IT systems is move-
ment in the ionosphere during data collection. A typical
IT system tracks a satellite through about 70° of latitude.
A satellite at an altitude of 1000 km takes approximately
20 minutes to traverse 70°. Significant motion in the iono-
sphere can occur during the 20 minutes required to collect
data for a single IT reconstruction. The currently accepted
practice in IT is to assume that all data are collected si-
multaneously and to perform the reconstruction as if the
source image were not varying [3, 4]. However, movement
in the ionosphere during data collection is a significant con-
tributor to errors in IT reconstructions. This paper will
examine and characterize the errors that occur in static IT
reconstructions due to movement in the ionosphere.

2. IONOSPHERIC TOMOGRAPHY
ALGORITHMS

Ionospheric tomography algorithms can be divided into two
classes: pixel based methods and nonpixel based methods.
Since different algorithms respond to time variations in the
jonosphere in different ways, this paper will present results
from both a pixel based algorithm and a nonpixel based al-
gorithm. Furthermore, since ionosonde information is often
used to supplement TEC data, this paper will also present
results using ionosonde information.

The pixel based algorithm that will be used to demon-
strate the effects of motion in the source image is smooth-
ness and conjugate gradients (SCG) [5]. The SCG algo-
rithm combines smoothness constraints similar to those pro-
posed by Fehmers [6] with solution by conjugate gradients.

It is known that ionospheric electron density tends to be
constant in the horizontal direction, smooth in the vertical
direction, and very small at low and high altitudes. These
characteristics are incorporated into the SCG algorithm by
minimizing the first derivative in the horizontal direction,
the second derivative in the vertical direction, and the value
of the pixels at the bottom and top of the reconstruction.
This leads to a large, sparse system of equations that can be
solved using any convenient least squares technique. The
method of conjugate gradients will be used here, since its
convergence is not affected by inconsistent data.

The nonpixel based algorithm that will be used to de-
monstrate the effects of motion in the source image is the
residual correction method (RCM) [7]). The image g{(0,7) is
expressed as the weighted sum of orthonormal basis images
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where the weights {z;---zx} are unknown. The set of
basis images {¢1--- 6k} is separable; the Fourier basis is
used in the horizontal direction, and empirical orthonormal
basis functions are used in the vertical direction.

Even with empirical orthonormal functions for the verti-
cal basis, the reconstruction is generally not uniquely deter-
mined. so the reconstruction problem is partitioned into a
set of smaller problems, each of which possesses a unique so-
lution. The RCM algorithm then iteratively cycles through
the partitions of the problem. RCM does not guarantee
nonnegativity of the solution, but if the data are consistent
with the a priori information, then RCM tends to produce
a nonnegative solution.

3. ARTIFACTS DUE TO MOTION

In other applications of tomography where complete projec-
tion data are available, imaging artifacts from movement
of an object during data collection include smearing and
streaking. Even very little motion can produce obvious arti-
facts in the reconstruction. Since ionospheric electron den-
sity is a smooth function, and the projection data for an IT
system are incomplete, some of the artifacts produced by
movement in the ionosphere during data collection are more
difficult to identify than the artifacts produced in other ap-
plications of tomography. In general, significant motion in
the ionosphere can produce distortions in the reconstruction
that resemble valid ionospheric features.

For any TEC data set, no matter how corrupted by time
variations in the ionosphere, there always exists a source
image that produces the observed data. This is particu-
larly true for IT because the projection data are incomplete.
Therefore the TEC data cannot be inconsistent with itself;
however, it may be inconsistent with a priori assumptions.
For example, the reconstructed image could contain fea-
tures that are clearly impossible, such as negative electron
densities.

For IT the types of errors that can be caused by move-
ment of the ionosphere during data collection can be sum-
marized as follows: (1) clearly visible artifacts, e.g. streak-
ing; (2) increased magnitude of residual; (3) negative pixels
in reconstruction; (4) geometric distortion, e.g. features dis-
placed from actual position. The presence of clearly visible
artifacts can be used to detect images that are corrupted
by motion in the source image, but these are not often vis-
ible in IT reconstructions. The magnitude of the residual
and number of negative pixels can, under some conditions,
be used to detect corrupted images. Geometric distortion
is a serious error that cannot be used to detect corrupted
images.

The effects of movement in the ionosphere during data
collection will be evaluated in terms of the four categories
stated above. Both SCG and RCM will be evaluated. Also,
SCG with ionosonde data in addition to TEC data will be
evaluated to determine the effect of additional information
on the reconstruction errors.

4. SIMULATIONS

The source image used in the simulations presented in this
paper is shown in Figure la. TEC data was simulated for
this image using 13 receivers from —30° to 30° latitude in
increments of 3° and sateilite positions from —35° to 35°
latitude in increments of 0.25°. In the simulations where
ionosonde data was used, data was simulated for 7 ionoson-
des from —30° to 30° latitude in increments of 10°.
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Figure 1: Original image and reconstructions using static
data: (a) Original image. (b) Reconstruction using SCG.
(c) Reconstruction using SCG with ionosonde information.
(d) Reconstruction using RCM.

The reconstructions of Figure 1 show how each of the al-
gorithms behave when the source image is not moving. The
reconstruction in Figure 1b was performed using the SCG
algorithm. The reconstruction is smeared in the vertical di-
rection, because the SCG algorithm uses minimal a priori
information. However, the three peaks are reconstructed at
the correct latitude and altitude.

The reconstruction in Figure lc was performed using
the SCG algorithm with ionosonde information. Since an
ionosonde is located directly under the central peak, thereis
a significant improvement in vertical resolution for the cen-
tral peak though not for the outside peaks. It is interesting
to note that the resolution is increased on the top side of
the central peak even though the ionosonde provides infor-
mation only about the bottom side. Information about the
bottom side profile is sufficient, when combined with the
TEC data, to increase the resolution on both the bottom
side and top side.

The reconstruction in Figure 1d was performed using
the RCM algorithm. The vertical resolution is much greater
for the RCM algorithm, because much stronger use is made
of a priori information. The a priori information consisted
of a set of 98 profiles with the altitude of the peak electron
density ranging from 250 km to 550 km.

All three of the reconstructions of Figure 1 are plot-
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ted using 98 pixels in the horizontal direction and 25 pix-
els in the vertical direction. For the SCG algorithm, this
means that the reconstruction was performed using 2450
basis functions, since for the SCG algorithm each pixel is
a basis function. For the RCM algorithm, 3 vertical basis
functions and 21 horizontal basis function where used, for
a total of 63 basis images.
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Figure 2: Original image and reconstructions where the
electron density drifted to the left during data collec-
tion: (a) Original image. (b) Reconstruction using SCG.
(c) Reconstruction using SCG with ionosonde information.
(d) Reconstruction using RCM.

Figure 2 shows the effect of the electron density drifting
to the left, in the opposite direction from the satellite mo-
tion, during data collection. The source image was allowed
to drift a total of 10° from 5° right of center to 5° left of
center. The source image is shown again in Figure 2a. A
reconstruction using SCG with no ionosonde information is
shown in Figure 2b. The outer peaks are displaced toward
the center of the image, because when the outer peaks drift
in the opposite direction from the satellite motion, they
are located closer to the center at the time the satellite is
directly overhead. All three peaks are reconstructed at a
slightly higher altitude than in the source image or in the
reconstruction of Figure 1b.

A reconstruction using SCG with ionosonde information
is shown in Figure 2¢c. Clearly, motion in the jonosphere
may be detected by examining how the ionosonde measure-
ments evolve over time; however, for a static reconstruction
only one set of ionosonde measurements can be included.
The ionosonde measurements were taken when the satellite
was at 0° latitude. The central peak is forced to the correct
altitude by the data from the ionosonde located at 0°, but
the outer peaks are displaced upwards even more than in
Figure 2b. Also, there is an artifact at the top center of the
reconstruction of Figure 2c.

A reconstruction using RCM is shown in Figure 2d. The
background electron density is reconstructed at the correct

altitude, but the three peaks are all displaced upwards as
in Figure 2b. The distortions at the left and right edges are
not significant, since there is no TEC data for those areas
of the image.
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Figure 3: Original image and reconstructions where the
electron density drifted to the right during data collec-
tion: (a) Original image. (b) Reconstruction using SCG.
(c) Reconstruction using SCG with ionosonde information.
(d) Reconstruction using RCM.

Figure 3 shows the effect of the electron density drifting
to the right, in the same direction as the satellite motion,
during data collection. The source image was allowed to
drift a total of 10° from 5° left of center to 5° right of
center. The source image is shown again in Figure 3a. A
reconstruction using SCG with no ionosonde information is
shown in Figure 3b. The outer peaks are displaced away
from the center of the image, and all three peaks are re-
constructed at a slightly higher altitude than in the source
image or in the reconstruction of Figure 1b. A reconstruc-
tion using SCG with ionosonde information is shown in Fig-
ure 3c. The central peak is forced to the correct altitude by
the ionosonde information, but the outer peaks are badly
distorted, and there is an artifact at the top center of the
image. A reconstruction using RCM is shown in Figure 3d
where all three peaks are displaced downwards.

Most of the reconstructions do not show any clearly
visible artifacts such as smearing or streaking. Figures 2c
and 3c show very minor artifacts, probably due to the con-
flict between the TEC data and the ionosonde data.

Table 1 shows the magnitude of the residual vector for
all 9 reconstructions as calculated for the TEC measure-
ments only. The residual vector is the difference between
the observed TEC data and TEC data calculated from the
reconstruction. The SCG algorithm does not show any in-
crease in the residual when the source image is moving. The
large number of pixels and small amount of a priori informa-
tion gives the SCG algorithm enough degrees of freedom to
calculate a reconstruction to match almost any TEC data.
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[ Il Static | Mov. Left | Mov. Right |

SCG 7709 7568 7219
SCG w/Iono. 2798 3831 3034
RCM 1957 6500 27191

Table 1: Length of residual vector in electrons/m®.

When ionosonde information is included in the data for the
SCG algorithm, there is a small increase in the residual
when the source image is moving, but not enough to re-
liably determine that there is a problem. For the RCM
algorithm, since it uses the strongest a priori information,
there is a dramatic increase in the residual when the source
image is moving. In order to identify reconstructions that
are corrupted by movement in the ionosphere, stronger use
of a priort information is needed.

[ I[ Static | Mov. Left | Mov. Right |
SCG 12 49 0
SCG w/Iono. 956 1040 986
RCM 0 216 208

Table 2: Number of negative pixels.

Table 2 shows the number of negative pixels for all 9
reconstructions. For the SCG algorithm there is no con-
sistent increase in the number of negative pixels when the
source image is moving, and when ionosonde information is
used there is only a small increase in the number of nega-
tive pixels. For the RCM algorithm there is a much larger
increase in the number of negative pixels when the source
image is moving. Again, stronger use of a priori informa-
tion is needed to identify reconstructions that are corrupted
by movement in the ionosphere.

. . Satellite motion . .
Satellite position1 ~—™  Satellite position 2

' Ionospheric drift
Ground Station B
Earth

Figure 4: Diagram showing why moving ionospheric dis-
turbances are displaced in altitude. The initial and final
positions of an ionospheric disturbance are shown in solid
lines, and the apparent position is shown in dotted lines.

Ground Station A

All of the reconstructions of Figures 2 and 3 show geo-
metric distortion of the three disturbances. The horizontal
displacement of the disturbances is not actually a distor-
tion, since the horizontal position is correct for the time
when the satellite is over the region where the disturbance
is found. The vertical displacement of the disturbances is a
more serious problem. Figure 4 illustrates why this vertical
displacement occurs. When the satellite is at position 1,
the data for ground station B shows the peak of the dis-
turbance. When the satellite has moved to position 2, the

disturbance has moved so that the data for ground station
A shows the peak of the disturbance. When the algorithm
attempts to find a fixed position for the disturbance, it lo-
cates the disturbance at the intersection of the lines 1B and
2A. Therefore the horizontal movement of the disturbance
during data collection causes a vertical displacement in the
reconstruction of the disturbance.

5. CONCLUSION

Time variations in the source image are a significant con-
tributor to the errors in static reconstructions of the iono-
sphere. These errors include artifacts and geometric distor-
tion. Errors due to motion in the ionosphere during data
collection are serious, since geometric distortion cannot be
detected from examination of a single IT reconstruction,
and artifacts are difficult to identify and not always present.

The TEC data cannot be inconsistent with itself, but it
can be inconsistent with a priori information. Therefore, it
is possible to detect that a reconstruction is distorted due to
motion in the source image if the reconstruction algorithm
uses sufficiently strong a priori information. This can be
accomplished by analysis of the magnitude of the residual
and the number of negative pixels. Ionosonde information
can be useful in detecting motion; however, inclusion of a
single set of ionosonde scans in the data set can lead to
additional distortion in the reconstruction and is generally
not sufficient to detect motion.
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